SHARP UPPER BOUND FOR THE FIRST NON-ZERO NEUMANN EIGENVALUE FOR BOUNDED DOMAINS IN RANK-1 SYMMETRIC SPACES

A. R. AITHAL AND G. SANTHANAM

ABSTRACT. In this paper, we prove that for a bounded domain Ω in a rank-1 symmetric space, the first non-zero Neumann eigenvalue $\mu_1(\Omega) \leq \mu_1(B(r_1))$ where $B(r_1)$ denotes the geodesic ball of radius r_1 such that

$$vol(\Omega) = vol(B(r_1))$$

and equality holds iff $\Omega = B(r_1)$. This result generalises the works of Szego, Weinberger and Ashbaugh-Benguria for bounded domains in the spaces of constant curvature.

1. Introduction and Statement of Theorems

In this paper we study the Neumann eigenvalue problem

(1)
$$\Delta u = \mu u \quad \text{in} \quad \Omega,$$
$$\nu \cdot u \equiv 0 \quad \text{on} \quad \partial \Omega,$$

where Ω is a bounded domain in a rank-1 symmetric space, $\partial\Omega$ is the boundary of Ω , ν is the outward normal to Ω and $\nu.u$ denotes the directional derivative of u in the direction ν

In 1954, Szego [6] proved that for all simply connected domains of given area in \mathbb{R}^2 , the maximum of the first non-zero Neumann eigenvalue is attained for a ball. Later, Weinberger [7] extended this result for bounded domains in \mathbb{R}^n for all $n \geq 2$.

Recently Ashbaugh and Benguria [1] have studied the problem (1) for a domain contained in a hemisphere of the Euclidean sphere S^n . For such a domain Ω they have proved that $\mu_1(\Omega) \leq \mu_1(r_1)$ where $B(r_1)$ denotes a geodesic ball of radius r_1 such that $vol(\Omega) = vol(B(r_1))$ and the equality holds iff Ω is a geodesic ball. They also show, using the methods of [7], that a similar result is also true for real hyperbolic space \mathbb{H}^n .

In this paper, we consider bounded domains in the remaining rank-1 symmetric spaces. If Ω is a domain in a rank-1 symmetric space of compact type, then we have a restriction on the size of the domain Ω viz., that Ω is contained in a geodesic ball of radius $\frac{i(M)}{4}$, where i(M) denotes the injectivity radius of (M,g). We prove the following theorems.

Theorem 1. Let Ω be a domain contained in a geodesic ball of radius $\frac{i(M)}{4}$ in a rank-1 symmetric space (M^n, ds^2) of compact type, where ds^2 denotes the canonical

Received by the editors January 20, 1994.

¹⁹⁹¹ Mathematics Subject Classification. Primary 35P15, 58G25.

Key words and phrases. Eigenvalue, centre of mass, Riemannian submersion.

Riemannian metric on M^n with sectional curvature $1 \leq K_M \leq 4$. Then

$$\mu_1(\Omega) \le \mu_1(B(r_1)) := \mu_1(r_1)$$

where $B(r_1)$ is a geodesic ball of radius r_1 having the same volume as that of Ω . Further the equality holds iff Ω is a geodesic ball.

Theorem 2. Let Ω be a bounded domain in a rank-1 symmetric space (M^n, ds^2) of non-compact type, where ds^2 denotes the canonical Riemannian metric on M^n with sectional curvature $-4 \le K_M \le -1$. Then

$$\mu_1(\Omega) \le \mu_1(B(r_1)) = \mu(r_1)$$

where $B(r_1)$ denotes a geodesic ball of radius r_1 having the same volume as that of Ω . Further the equality holds iff Ω is a geodesic ball.

As mentioned earlier, for the symmetric spaces of constant sectional curvature, the above results have been established in [7] and [1]. See also the concluding remarks in section 5.

The crucial step in the works of [7] and [1] is what has come to be known as the *centre of mass theorem*. In this paper we formulate this in a more geometric and conceptual way and present a simple proof. After decomposing the Laplacian Δ_M in geodesic polar coordinates and identifying the correct test functions, the analytical arguments developed in [7] and [1] carry through.

We refer to [2] and [5] for the basic Riemannian geometry used in this paper.

2. The centre of mass theorem for domains in complete Riemannian manifolds

Let (M,g) be a complete Riemannian manifold. For a point $p \in M$, let us denote by r(p) the convexity radius of (M,g) at p. Let Ω be a domain in (M,g) such that Ω is contained in B(p,r(p)) for some $p \in M$. let us denote by $C\Omega$ the convex hull of Ω . Let $\exp_q: T_qM \to M$ be the exponential map and let $X = (x_1, x_2, \ldots, x_n)$ be a system of normal coordinates centred at q. We identify $C\Omega$ with $\exp_q^{-1}(C\Omega)$ for each $q \in C\Omega$. We denote $g_q(X,X)$ as $\|X\|_q^2$ for $X \in T_qM$. Our centre of mass theorem is the following.

Theorem 3. Let Ω be a bounded domain in (M,g) contained in $B(q_0, r(q_0))$ for some $q_0 \in M$ and let G be a continuous function on $[0, 2r(q_0)]$ which is positive on $(0, 2r(q_0))$. Then there exists a point $p \in C\Omega$ such that

$$\int_{\Omega} G(\parallel X \parallel_p) X dV = 0$$

where $X = (x_1, x_2, ..., x_n)$ is a normal coordinate system centred at p.

Proof. For $q \in C\Omega$, we define

$$v(q) := \int_{\Omega} G(\parallel X \parallel_q) X dV$$

where $X = (x_1, x_2, \dots, x_n)$ is a geodesic normal coordinate system centred at q.

Now we shall show that the continuous vector field v points inward along the boundary $\partial C\Omega$ of $C\Omega$. Then the theorem follows from the Brouwer's fixed point theorem.

Since $C\Omega$ is convex, it is contained in the half space $H_q:=\{X\in T_qM:g(X,\nu(q))\leq 0\}$ for every $q\in C\Omega$, where $\nu(q)$ denotes the outward normal to

We can find a $\delta > 0$ such that $\exp_q(\delta v(q)) \in C\Omega$ for every $q \in C\Omega$. Then the continuous map $f_v : C\Omega \to C\Omega$ defined by

$$f_v(q) := \exp_q(\delta v(q))$$

has a fixed point $p \in C\Omega$ by the Brouwer's fixed point theorem. Hence v(p) = 0. This completes the proof of the theorem.

Remark. It is clear from the proof that the centre of mass theorem applies to any bounded domain Ω in (M, q) such that $C\Omega$ is properly contained in M.

3. Properties of the first non-zero Neumann eigenvalue for geodesic balls in rank-1 symmetric spaces

Let (M^n, ds^2) denote any one of the following rank-1 symmetric spaces: Complex projective space \mathbb{CP}^n , quarternionic projective space \mathbb{HP}^n , the Cayley projective plane $Ca\mathbb{P}^2$ or their non-compact duals. Let \mathbb{K} denote \mathbb{R} , C, \mathbb{H} or Ca and $k = \dim_{\mathbb{R}}\mathbb{K}$. Throughout out this paper we will use these notations. Let $\mu_1(r_1)$ denote the first non-zero Neumann eigenvalue for a geodesic ball of radius r_1 in (M^n, ds^2) .

We begin with the study of Δ_M in geodesic polar coordinates centred at a point $p \in M$.

$$\Delta_M = -\frac{\partial^2}{\partial r^2} - H(r)\frac{\partial}{\partial r} + \Delta_{S(r)}$$

where H(r) denotes the trace of the second fundamental form of the distance sphere S(r) := S(p, r) and $\Delta_{S(r)}$ denotes the Laplacian of S(r).

Now we will describe H(r) and $\Delta_{S(r)}$. Let $v \in T_pM$ be a unit tangent vector and $\gamma_v(r)$ be the geodesic with $\gamma_v(0) = p$ and $\gamma_v'(0) = v$. Let us denote by J(v,r) the Riemannian density function along $\gamma_v(r)$. Since (M^n, ds^2) is a rank-1 symmetric space J(v,r) is independent of v and we write it as J(r). We know that, for (M^n, ds^2) of compact type, for $0 \le r < \frac{\pi}{2}$

$$J(r) = \sin^{kn-1} r \cos^{k-1} r$$

and for (M, ds^2) of non-compact type, for all $r \geq 0$

$$J(r) = \sinh^{kn-1} r \cosh^{k-1} r.$$

The trace of the second fundamental form H(r) of S(r) is equal to $J'(r)J^{-1}(r)$. Hence

$$H(r) = (kn - 1)\cot r - (k - 1)\tan r$$

for (M^n, ds^2) of compact type and

$$H(r) = (kn - 1)\coth r + (k - 1)\tanh r$$

for (M^n, ds^2) of non-compact type.

As an illustration, we have for (\mathbb{CP}^n, ds^2) , $J(r) = \sin^{2n-1} r \cos r$ and $H(r) = (2n-1) \cot r - \tan r$ and for the quarternionic hyperbolic space (\mathbb{HH}^n, ds^2) , $J(r) = \sinh^{4n-1} r \cosh^3 r$ and $H(r) = (4n-1) \coth r + 3 \tanh r$. Note that for $\mathbb{C}a\mathbb{P}^2$ we have n=2. Now we study the first non-zero eigenvalue $\lambda_1(S(r))$ of $\Delta_{S(r)}$.

3.1. (M^n, ds^2) of compact type. We have a natural Riemannian submersion

(2)
$$\Pi: (S(r), ds^2|_{S(r)}) \to (M^{n-1}, \sin^2 r ds^2)$$

with totally geodesic fibres, for the distance sphere S(r) in (M^n, ds^2) with the induced metric $ds^2|_{S(r)}$. We always assume that 0 < r < i(M). The fibre of Π containing a point $\gamma_v(r) = q \in S(r)$, where $v \in T_pM$ is a unit vector, is $\mathbb{K}.v \cap S(r)$. We can write $\Delta_{S(r)}$ as

$$\Delta_{S(r)} = \frac{1}{\sin^2 r \cos^2 r} \Delta_V + \frac{1}{\sin^2 r} \Delta_H$$

where Δ_V denotes the Laplacian along the fibres of the canonical fibration of the unit sphere (S^{kn-1}, ds^2) with totally geodesic fibres S^{k-1} and $\Delta_H := \Delta_{(S^{kn-1}, ds^2)} - \Delta_V$. We rewrite $\Delta_{S(r)}$ as

$$\Delta_{S(r)} = \frac{1}{\cos^2 r} \Delta_V + \frac{1}{\sin^2 r} \Delta_{(S^{kn-1}, ds^2)}.$$

Then we have

(3)
$$\frac{1}{\sin^2 r} \Delta_H \mid_{\Pi^* C^{\infty}(M^{n-1})} = \Pi^* \Delta_{(M^{n-1}, \sin^2 r ds^2)}.$$

By equation (3), all the eigenfunctions of $\Delta_{(M^{n-1}, \sin^2 r ds^2)}$ are also eigenfunctions of $\Delta_{S(r)}$ with the same eigenvalues. In particular the first non-zero eigenvalue $\frac{2kn}{\sin^2 r}$ of $\Delta_{(M^{n-1}, \sin^2 r ds^2)}$ occurs as an eigenvalue of $\Delta_{S(r)}$.

The Euclidean coordinate functions X_i , for $1 \le i \le kn$, are the first non-zero eigenfunctions of $\Delta_{(S^{kn-1},ds^2)}$ corresponding to the first eigenvalue kn-1. Since the fibres are all totally geodesic, these eigenfunctions restricted to the fibres of Π are also eigenfunctions with eigenvalue k-1. Hence we get

$$\Delta_{S(r)}X_i = \left(\frac{kn-1}{\sin^2 r} + \frac{k-1}{\cos^2 r}\right)X_i$$

for $1 \le i \le kn$. Now

$$(\frac{kn-1}{\sin^2 r} + \frac{k-1}{\cos^2 r}) < \frac{2kn}{\sin^2 r}$$

iff

$$r < \tan^{-1}\left(\sqrt{\frac{kn+1}{k-1}}\right).$$

Hence for $r < \tan^{-1}(\sqrt{\frac{kn+1}{k-1}})$, X_i , for $1 \le i \le kn$ are the first eigenfunctions of $\Delta_{S(r)}$ with eigenvalue $\lambda_1(S(r)) = (\frac{kn-1}{\sin^2 r} + \frac{k-1}{\cos^2 r})$.

We remark that $\lambda_1(S(r))$ is a strictly decreasing function of r for $0 \leq \frac{\pi}{4}$. This remark will be used later in section 4.

3.2. (M^n, ds^2) of non-compact type. We will denote by $(M^n)^*$ the compact dual of M^n . As in the compact type, here also, we have a natural Riemannian submersion

(4)
$$\Pi: (S(r), ds^2|_{S(r)}) \to ((M^{n-1})^*, \sinh^2 r ds^2)$$

with totally geodesic fibres, for the distance sphere S(r) := S(p,r) in (M^n, ds^2) . For a point $q \in S(r)$, the fibre through the point $q = \gamma_v(r)$, where $v \in T_pM$ is a unit vector, is $\mathbb{K}.v \cap S(r)$. As before we have

(5)
$$\Delta_{S(r)} = \frac{-1}{\cosh^2 r} \Delta_V + \frac{1}{\sinh^2 r} \Delta_{(S^{kn-1}, ds^2)}$$

and the euclidean coordinate functions X_i 's, for $1 \le i \le kn$ are eigen functions of $\Delta_{S(r)}$ with eigenvalue $\lambda_1(S(r)) = (\frac{kn-1}{\sinh^2 r} - \frac{k-1}{\cosh^2 r})$. Now $(\frac{kn-1}{\sinh^2 r} - \frac{k-1}{\cosh^2 r})$ will be the first non-zero eigenvalue of $\Delta_{S(r)}$ so long as

$$\left(\frac{kn-1}{\sinh^2 r} - \frac{k-1}{\cosh^2 r}\right) < \frac{2kn}{\sinh^2 r}$$

and this inequality holds for all r > 0. Hence $\lambda_1(S(r)) = (\frac{kn-1}{\sinh^2 r} - \frac{k-1}{\cosh^2 r})$ for all r > 0. Again we remark that $\lambda_1(S(r))$ is a strictly decreasing function of r for r > 0. See also [3] for further study of Laplacians and Riemannian submersions with totally geodesic fibres.

3.3. Now we shall study the first non-zero Neumann eigenvalue $\mu_1(r_1)$. The first non-zero eigenvalue of problem (1) is, by the separation of variables technique, either the second eigenvalue τ_2 of

(6)
$$-\frac{1}{J(r)}Q\frac{\partial}{\partial r}(J(r)Q\frac{\partial}{\partial r}f) = \tau f$$

where f is a function defined on $[0, r_1]$ satisfying the boundary conditions f(0) finite and f'(0) = 0 or the first eigenvalue μ_1 of

(7)
$$-\frac{1}{J(r)}Q\frac{\partial}{\partial r}(J(r)Q\frac{\partial}{\partial r}g) + \lambda_1(S(r))g = \mu g.$$

where g is a function defined on $[0, r_1]$ with boundary conditions g(0) finite and g'(0) = 0. We note that g(0) = 0 and also that the first eigenvalue of equation (6) is zero. Since g is a first eigenfunction of equation (7) and also that g(0) = 0, g does not change sign in $(0, r_1)$. We assume that g is positive in $(0, r_1)$.

Let f and g be the eigenfunctions of equation (6) and equation (7) with eigenvalues τ_2 and μ_1 respectively. Let h be a non-trivial solution of

(8)
$$-\frac{1}{J(r)}Q\frac{\partial}{\partial r}(J(r)Q\frac{\partial}{\partial r}h) = \mu_1 h.$$

on $[0, r_1]$. By differentiating the equation (8), we see that h' satisfies equation (7) with the same eigenvalue μ_1 . Hence h' and g are proportional. We can assume that h' = g. Since f and h satisfy the same equation with eigenvalues τ_2 and μ_1 respectively, we have

(9)
$$Q\frac{\partial}{\partial r}(J(r)(h'f - f'h)) = (\tau_2 - \mu_1)fhJ(r).$$

Since f is an eigenfunction corresponding to the second eigenvalue it must change sign in $(0, r_1)$, say at $a \in (0, r_1)$. We may assume that f is positive in (0, a) and f < 0 in (a, r_1) . Also we have f'(a) < 0. Now integrating the equation (9), we get

(10)
$$(\tau_2 - \mu_1) \int_0^a fh J(r) dr = J(r) (h'f - f'h) \mid_0^a$$

$$= -J(a) f'(a) h(a)$$

Since g is positive in $(0, r_1)$ and $\mu_1 h(r_1) = g'(r_1) - H(r_1)g(r_1) < 0$, we get $h(r_1) < 0$. Thus, h' = g and $h(r_1) < 0$ together imply that $h \le 0$ in $(0, r_1)$. Now from the equation (10), it follows that $\mu_1 < \tau_2$. Thus we have proved that $\mu_1 = \mu_1(r_1)$.

Now we study the properties of the function g and the function $\mu_1(r_1)$. Let us recall that g satisfies

(11)
$$Q\frac{\partial}{\partial r}(J(r)Q\frac{\partial}{\partial r}g) = (\lambda_1(S(r)) - \mu_1(r_1))gJ(r)$$

with boundary conditions g(0)=0 and $g'(r_1)=0$. Define $\Psi(r):=J(r)g'(r)$. Then $\Psi(0)=0$ and $\Psi(r_1)=0$ and $\Psi'(r)>0$ near 0. This implies that Ψ increases from zero in the beginning and then decreases to zero. In particular $(\lambda_1(S(r))-\mu_1(r_1))$ must change sign at some point $a\in(0,r_1)$ by the equation (11). Since $\lambda_1(S(r))$ is a strictly decreasing function in $(0,r_1)$, $\Psi'(r)<0$ in $[a,r_1]$. Hence $\Psi(r)>0$ and $\mu_1(r_1)>\lambda_1(S(r_1))$. Further, since Ψ is positive in $(0,r_1)$, it follows that g'>0 on $(0,r_1)$. Thus we have proved the following

Lemma 1.
$$g'(r) > 0$$
 in $(0, r_1)$ and $\mu_1(r_1) > \lambda_1(S(r_1))$.

We note that for M of compact type, we have the restriction $0 < r_1 \le \frac{\pi}{4}$. Using the lemma we prove the following.

Proposition 1. $\mu_1(r_1)$ is a decreasing function of r_1 .

Proof. We set up the prüfer variables $\rho(r)$ and $\theta(r)$ for a g satisfying the Sturm-Liouville system

$$Q\frac{\partial}{\partial r}(P(r)Q\frac{\partial}{\partial r}g) + Q(r)g = 0$$

in $(0, r_1)$ with boundary conditions g(0) = 0 and $g'(r_1) = 0$, where P = J(r) and $Q(r) = (\lambda_1(S(r)) - \mu_1(r_1))J(r)$. The variables $\rho(r)$ and $\theta(r) = \theta(r, \mu_1(r_1))$ are defined as $\rho(r)\cos\theta(r) = P(r)Q\frac{\partial}{\partial r}g(r)$ and $g(r) = \rho(r)\sin\theta(r)$. By Lemma 1 in section 7 of [4] we know that $\theta(r,\lambda)$ is an increasing function of λ for a fixed r > 0. By Lemma 1, $\theta(r,\mu_1(r_1)) \in (0,\frac{\pi}{2})$ for $0 < r < r_1 \le \frac{\pi}{4}$. Now we claim that for $0 < r_1 < r_2 \le \frac{\pi}{4}$, $\mu_1(r_1) > \mu_1(r_2)$. If not, then $\mu_1(r_1) \le \mu_1(r_2)$. Hence

$$\frac{\pi}{2} = \theta(r_1, \mu(r_1)) \le \theta(r_1, \mu_1(r_2)) \in (0, \frac{\pi}{2})$$

which is a contradiction. This completes the proof of the proposition.

Corollary 1. For (M^n, ds^2) of compact type, we have $\mu_1(r_1) \ge \mu_1(\frac{\pi}{4}) = \lambda_1(M) = 2k(n+1)$ for $0 < r_1 \le \frac{\pi}{4}$.

Proof. The function $g(r) = \sin r \cos r$ satisfies the equation (7) with $\mu = 2k(n+1)$.

4. Proof of Theorem 1

In this section (M^n, ds^2) is of compact type. Let g be the first eigenfunction of the equation (7) on $[0, r_1]$. We define a function B on $[0, r_1]$ by,

$$B(r) = (Q \frac{\partial}{\partial r} g)^2 + \lambda_1(S(r))g^2(r).$$

The following lemma is a main ingredient in the proof of Theorem 1.

Lemma 2. $B' \leq 0$ on $[0, r_1]$ for $0 < r_1 \leq \frac{\pi}{4}$.

Proof. Following [1], we define

$$q(r) = \sin 2r \frac{g'}{g}.$$

Then

$$B(r) = \left\{ q^2(r) + 4 \left[(kn - 1)\cos^2 r + (k - 1)\sin^2 r \right] \right\} \frac{g^2}{\sin^2 2r}$$
$$= \left[q^2 + 4k(n - 1)\cos^2 r + 4(k - 1) \right] \frac{g^2}{\sin^2 2r}$$

and

$$B'(r) = 2 \left[qq' - 2k(n-1)\sin 2r \right] \frac{g^2}{\sin^2 2r}$$

$$+ \left(q^2 + 4k(n-1)\cos^2 r + 4(k-1) \right) \left(\frac{q - 2\cos 2r}{\sin 2r} \right) \left(\frac{g^2}{\sin^2 2r} \right)$$

The lemma follows once we prove that $q' \leq 0$ and $0 \leq q \leq 2\cos 2r$ on $[0, r_1]$. Now we prove the sublemma.

Sublemma. $0 \le q \le 2\cos 2r$ and $q' \le 0$ on $[0, r_1]$.

Proof. We have

(12)
$$q' = \sin 2r \frac{g''}{g} + 2\cos 2r \frac{g'}{g} - \sin 2r (\frac{g'}{g})^2.$$

Now substituting for

$$q'' = -H(r)q' + (\lambda_1(S(r)) - \mu_1(r_1))q$$

in equation (12), we get

(13)
$$q' = -(\mu_1(r_1) - \lambda_1(S(r)))\sin 2r - H(r)q + 2q\cot 2r - \frac{q^2}{\sin 2r}.$$

We rewrite equation (13) as

(14)
$$q' = -(\mu_1(r_1) - \lambda_1(M) + 4)\sin 2r + \frac{(2\cos 2r - q)\left[q + (k(n+1) - 2)\cos 2r + k(n-1)\right]}{\sin 2r}.$$

From the definition, we have q(0) = 2 and by an easy computation using the equation (14) we see that q'(0) = 0. By differentiating the equation (14) and evaluating at t=0, using Lemma 1, we get that $q''(0) \leq -8$. Further $q(r_1)=0$ and using Lemma 1 and the equation (14) we see that $q'(r_1) < 0$.

Now we prove that $q \leq 2\cos 2r$ on $[0, r_1]$ using a comparison theorem (see Theorem 7, p. 267 of [4]). Let F(r,q) denote the right hand side of the equation (14). From the initial values q, q' and q'' at t = 0, it follows that $q(r) \le 2\cos 2r$ for small values of r, say for $r \in [0, a]$, for some $a < r_1$. Now if $q \ge 2\cos 2r$ on $[a, a + \epsilon)$ for some $\epsilon > 0$, we would have, by the equation (14), for $r \in [a, a + \epsilon)$

$$q'(r) \le -(\mu_1(r_1) - \lambda_1(M) + 4)\sin 2r$$

 $< -4\sin 2r$
 $= F(r,\cos 2r).$

The inequality in the second step above follows from Lemma 1. Now by the comparison theorem cited above, we conclude that $q \leq 2\cos 2r$ in $[a, a + \epsilon)$. Thus we have proved that $q \leq 2\cos 2r$ on $[0, r_1]$.

To prove that $q' \leq 0$ on $[0, r_1]$, we rewrite the equation (14) as

$$q' = -\mu_1 \sin 2r + \frac{1}{\sin 2r} \left[2k(n+1) - 4 - q^2 - k(n-1)q \right] + \cot 2r \left[2k(n-1) - (k(n+1) - 4)q \right]$$

i.e.,

$$q' = -\mu_1 \sin 2r + \frac{1}{\sin 2r} \left[2k(n-1) + 4 - q^2 - k(n-1)q \right]$$

$$+ \cot 2r \left[2k(n+1) - 8 - (k(n+1) - 4)q \right] + 4(k-2) \frac{(1-\cos 2r)}{\sin 2r}.$$

Since $q \le 2\cos 2r$ and $k \ge 2$, $2k(n-1)+4-q^2-k(n-1)q \ge 0$ and $2k(n+1)-8-(k(n+1)-4)q \ge 0$. Hence the right hand side F(r,q) of the above equation is convex in the variable r, as $-\sin 2r$, $\frac{1}{\sin 2r}$, $\cot 2r$ and $\tan r$ are convex functions for $0 < r \le \frac{\pi}{4}$. As in [1], we conclude that $q' \le 0$ on $[0, r_1]$ for $0 < r_1 \le \frac{\pi}{4}$.

Now to the proof of the theorem. We extend g to a function G on $[0, \frac{\pi}{4}]$ by

$$G(r) = \begin{cases} g(r) & \text{for } 0 \le r \le r_1, \\ g(r_1) & \text{for } r_1 \le r \le \frac{\pi}{4}. \end{cases}$$

Let Ω be a domain in M contained in a ball of radius $\frac{\pi}{8}$. Now we apply the centre of mass theorem with weight function $\frac{G(r)}{r}$ to the domain Ω . Let $p \in C\Omega$ be the centre of mass of Ω . Then, for normal coordinates $(X_1, X_2, \ldots, X_{kn})$ centred at p,

$$\int_{\Omega} \frac{G(r)}{r} X_i dV = 0$$

for $1 \le i \le kn$. Now from the Rayleigh-Ritz inequality, we have

$$\mu_1(\Omega) \le \frac{\int_{\Omega} |\nabla(\frac{GX_i}{r})|^2 dV}{\int_{\Omega} (\frac{GX_i}{r})^2 dV}$$

i.e.,

$$\mu_1(\Omega) \int_{\Omega} (\frac{GX_i}{r})^2 dV \le \int_{\Omega} |\nabla (\frac{GX_i}{r})|^2 dV.$$

By summing over i = 1, 2, ..., kn we get

(15)
$$\mu_1(\Omega) \le \frac{\sum_{i=1}^{kn} \int_{\Omega} |\nabla(\frac{GX_i}{r})|^2 dV}{\int_{\Omega} G^2 dV}.$$

By applying the divergence theorem to the terms in the numerator of the right hand side of the equation (15), we get

$$\mu_1(\Omega) \le \frac{\int_{\Omega} (G'^2 + \lambda_1(S(r))G^2)dV}{\int_{\Omega} G^2dV}.$$

We denote the function $G'^2 + \lambda_1(S(r))G^2$ also by B on $[0, \frac{\pi}{4}]$. By Lemma 2, B is a decreasing function on $[0, r_1]$ and since $\lambda_1(S(r))$ is a decreasing function on $[r_1, \frac{\pi}{4}]$,

we see that B is a decreasing function on $[0, \frac{\pi}{4}]$. Also G is an increasing function on $[0, \frac{\pi}{4}]$. Following [7], we have

$$\int_{\Omega} BdV = \int_{\Omega \cap B(r_1)} BdV + \int_{\Omega \setminus \Omega \cap B(r_1)} BdV$$

$$\leq \int_{\Omega \cap B(r_1)} BdV + B(r_1) \int_{\Omega \setminus \Omega \cap B(r_1)} dV$$

and

$$\int_{B(r_1)} BdV = \int_{\Omega \cap B(r_1)} BdV + \int_{B(r_1) \setminus \Omega \cap B(r_1)} BdV$$

i.e.,

$$\int_{\Omega \cap B(r_1)} B dV = \int_{B(r_1)} B dV - \int_{B(r_1) \backslash \Omega \cap B(r_1)} B dV.$$

This implies that

$$\int_{\Omega} BdV \le \int_{B(r_1)} BdV - \int_{B(r_1) \setminus \Omega \cap B(r_1)} BdV + B(r_1) \int_{B(r_1) \setminus \Omega \cap B(r_1)} dV.$$

Since $vol(B(r_1) \setminus \Omega \cap B(r_1)) = vol(\Omega \setminus \Omega \cap B(r_1))$ and B is decreasing,

$$\int_{\Omega} BdV \le \int_{B(r_1)} BdV$$

By similar arguments we can prove that

$$\int_{\Omega} G^2 dV \ge \int_{B(r_1)} G^2 dV.$$

Hence $\mu_1(\Omega) \leq \mu_1(r_1)$ and equality holds iff $\Omega = B(p, r_1)$.

5. Proof of Theorem 2

In this section (M^n, ds^2) is of non-compact type. Let $\mu_1(r_1)$ denote the first non-zero Neumann eigenvalue for the geodesic ball of radius r_1 for $r_1 > 0$. Let g be the eigenfunction satisfying equation (7) on $[0, r_1]$ with eigenvalue $\mu_1(r_1)$. i.e.,

$$-g'' - ((kn-1)\coth r + (k-1)\tanh r)g' + \left(\frac{kn-1}{\sinh^2 r} - \frac{k-1}{\cosh^2 r}\right)g = \mu_1(r_1)g$$

with the boundary conditions g(0) = 0 and $g'(r_1) = 0$. We define a function

$$B(r) = (Q\frac{\partial}{\partial r}g)^2 + \lambda_1(S(r))g^2(r).$$

Now we verify that B is a decreasing function on $[0, r_1]$.

(16)
$$B'(r) = 2g'g'' + 2gg'\lambda_1(S(r)) - 2g^2 \left[(kn - 1)\frac{\cosh r}{\sinh^3 r} - (k - 1)\frac{\sinh r}{\cosh^3 r} \right].$$

Now, by substituting for g'' in equation (16) we get,

$$\frac{1}{2}B'(r) = -((kn-1)\coth r + (k-1)\tanh r)(g')^{2}$$
$$-\left[(kn-1)\frac{\cosh r}{\sinh^{3} r} - (k-1)\frac{\sinh r}{\cosh^{3} r}\right]g^{2}$$
$$+2gg'\left[\frac{kn-1}{\sinh^{2} r} - \frac{k-1}{\cosh^{2} r}\right] - \mu_{1}(r_{1})gg'.$$

Now by an easy computation, we get

$$\frac{1}{2}B'(r) = -\frac{k(n-1)}{\sinh^3 r} \left[(g'\sinh r - g)^2 \cosh r + 2gg'(\cosh r - 1)\sinh r \right]
- \frac{2(k-1)}{\sinh^3 2r} \left[(g'\sinh 2r - 2g)^2 \cosh 2r + 4gg'(\cosh 2r - 1)\sinh 2r \right]
- \mu_1(r_1)gg'
\le 0 \qquad \text{by Lemma 1.}$$

Let Ω be a bounded domain in (M^n, ds^2) . Let $B(r_1)$ be a geodesic ball of radius r_1 in M such that $vol(\Omega) = vol(B(r_1))$. We extend the function g to a function G on $[0, \infty)$ by

$$G(r) = \begin{cases} g(r) & \text{for } 0 \le r \le r_1, \\ g(r_1) & \text{for } r_1 \le r < \infty. \end{cases}$$

Now we apply the centre of mass theorem with the weight function $\frac{G(r)}{r}$ to the domain Ω . Let $p \in C\Omega$ be the centre of mass of Ω . Then, for normal coordinates $(X_1, X_2, \ldots, X_{kn})$ centred at p,

$$\int_{\Omega} \frac{G(r)}{r} X_i dV = 0$$

for $1 \le i \le kn$. By the Rayleigh-Ritz inequality, we have

$$\mu_1(\Omega) \le \frac{\int_{\Omega} |\nabla(\frac{GX_i}{r})|^2 dV}{\int_{\Omega} (\frac{GX_i}{r})^2 dV}$$

i.e.,

$$\mu_1(\Omega) \int_{\Omega} \left(\frac{GX_i}{r}\right)^2 dV \le \int_{\Omega} |\nabla \left(\frac{GX_i}{r}\right)|^2 dV.$$

By summing over $i = 1, 2, 3, \dots, kn$, we get

(17)
$$\mu_1(\Omega) \le \frac{\sum_{i=1}^{kn} \int_{\Omega} |\nabla(\frac{GX_i}{r})|^2 dV}{\int_{\Omega} G^2 dV}.$$

By applying the divergence theorem to the terms in the numerator of the right hand side of the equation (17), we get

$$\mu_1(\Omega) \le \frac{\int_{\Omega} \left((G')^2 + \lambda_1(S(r))G^2 \right) dV}{\int_{\Omega} G^2 dV}.$$

We denote the function $(G')^2 + \lambda_1(S(r))G^2$ also by B on $[0, \infty)$. Since $B' \leq 0$, B is a decreasing function for all r > 0. Also G is an increasing function for all r > 0. As in section 4, we see that $\mu_1(\Omega) \leq \mu_1(r_1)$ and equality holds iff $\Omega = B(p, r_1)$.

Concluding Remarks.

- 1. Our proof of Theorem 1 when applied to (S^n, ds^2) gives the result for a domain contained in a geodesic ball of radius $\frac{\pi}{4}$. A reflection argument developed in [1], then shows that the theorem is true for a domain contained in a hemisphere of S^n . But this reflection argument can not be applied to the other symmetric spaces of compact type.
- 2. The improvement of the size of the domain Ω in Theorem 1 depends on the location of the centre of mass of Ω .
- 3. In their proof of Theorem 1 for the case of (S^n, ds^2) , Ashbaugh and Benguria [1] have used rearrangement of the functions B and G. As we have shown, this is not needed.

References

- 1. M.S. Ashbaugh and R.D. Benguria, Sharp upper bound to the first non-zero eigenvalue for bounded domains in spaces of constant curvature, preprint.
- 2. M. Berger, Lectures on Geodesics in Riemannian Geometry, Tata Institute of Fundamental Research, Bombay, 1965. MR **35:**6100
- 3. J. P. Bourguignon and L. Berard Bergery, Laplacians and Riemannian submersions with totally geodesic fibres, Illinois Journal of Mathematics 26 (1982), 181-200. MR 84m:58153
- 4. G. Birkhoff and G.C. Rota, Ordinary Differential Equations, John Wiley, New York, 1978. MR 80a:34001
- 5. S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, Universitext, Springer-Verlag. MR 88k:53001
- 6. G. Szego, Inequalities for certain eigenvalues of a membrane problem, Journal of Rational Mechanics and Analysis 3 (1954), 343-356. MR 15:877c
- 7. H. F. Weinberger, An isoperimetric inequality for the N-dimensional free membrane problem, Journal of Rational Mechanics and Analysis 5 (1956), 633-635. MR 18:63c

Department of Mathematics, University of Bombay, Vidyanagare, Bombay-400098, India

E-mail address: aithal@mathbu.ernet.in

SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, HOMI BHABHA Road, Bombay-400-005, India

E-mail address: santhana@math.tifr.res.in